Point Cloud Library (PCL) 1.14.0
Loading...
Searching...
No Matches
sac_model_cone.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2012, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 */
38
39#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
40#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
41
42#include <pcl/sample_consensus/sac_model_cone.h>
43#include <pcl/common/common.h> // for getAngle3D
44#include <pcl/common/concatenate.h>
45
46//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
47template <typename PointT, typename PointNT> bool
49{
50 if (samples.size () != sample_size_)
51 {
52 PCL_ERROR ("[pcl::SampleConsensusModelCone::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
53 return (false);
54 }
55 return (true);
56}
57
58//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
59template <typename PointT, typename PointNT> bool
61 const Indices &samples, Eigen::VectorXf &model_coefficients) const
62{
63 // Make sure that the samples are valid
64 if (!isSampleGood (samples))
65 {
66 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Invalid set of samples given\n");
67 return (false);
68 }
69
70 if (!normals_)
71 {
72 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] No input dataset containing normals was given! Use setInputNormals\n");
73 return (false);
74 }
75
76 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
77 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
78 Eigen::Vector4f p3 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z, 0.0f);
79
80 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
81 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
82 Eigen::Vector4f n3 ((*normals_)[samples[2]].normal[0], (*normals_)[samples[2]].normal[1], (*normals_)[samples[2]].normal[2], 0.0f);
83
84 //calculate apex (intersection of the three planes defined by points and belonging normals
85 Eigen::Vector4f ortho12 = n1.cross3(n2);
86 Eigen::Vector4f ortho23 = n2.cross3(n3);
87 Eigen::Vector4f ortho31 = n3.cross3(n1);
88
89 float denominator = n1.dot(ortho23);
90
91 float d1 = p1.dot (n1);
92 float d2 = p2.dot (n2);
93 float d3 = p3.dot (n3);
94
95 Eigen::Vector4f apex = (d1 * ortho23 + d2 * ortho31 + d3 * ortho12) / denominator;
96
97 //compute axis (normal of plane defined by: { apex+(p1-apex)/(||p1-apex||), apex+(p2-apex)/(||p2-apex||), apex+(p3-apex)/(||p3-apex||)}
98 Eigen::Vector4f ap1 = p1 - apex;
99 Eigen::Vector4f ap2 = p2 - apex;
100 Eigen::Vector4f ap3 = p3 - apex;
101
102 Eigen::Vector4f np1 = apex + (ap1/ap1.norm ());
103 Eigen::Vector4f np2 = apex + (ap2/ap2.norm ());
104 Eigen::Vector4f np3 = apex + (ap3/ap3.norm ());
105
106 Eigen::Vector4f np1np2 = np2 - np1;
107 Eigen::Vector4f np1np3 = np3 - np1;
108
109 Eigen::Vector4f axis_dir = np1np2.cross3 (np1np3);
110 axis_dir.normalize ();
111
112 // normalize the vector (apex->p) for opening angle calculation
113 ap1.normalize ();
114 ap2.normalize ();
115 ap3.normalize ();
116
117 //compute opening angle
118 float opening_angle = ( std::acos (ap1.dot (axis_dir)) + std::acos (ap2.dot (axis_dir)) + std::acos (ap3.dot (axis_dir)) ) / 3.0f;
119
120 model_coefficients.resize (model_size_);
121 // model_coefficients.template head<3> () = line_pt.template head<3> ();
122 model_coefficients[0] = apex[0];
123 model_coefficients[1] = apex[1];
124 model_coefficients[2] = apex[2];
125 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
126 model_coefficients[3] = axis_dir[0];
127 model_coefficients[4] = axis_dir[1];
128 model_coefficients[5] = axis_dir[2];
129 // cone radius
130 model_coefficients[6] = opening_angle;
131
132 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
133 return (false);
134 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
135 return (false);
136
137 PCL_DEBUG ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
138 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
139 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
140 return (true);
141}
142
143//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
144template <typename PointT, typename PointNT> void
146 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
147{
148 // Check if the model is valid given the user constraints
149 if (!isModelValid (model_coefficients))
150 {
151 distances.clear ();
152 return;
153 }
154
155 distances.resize (indices_->size ());
156
157 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
158 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
159 const float sin_opening_angle = std::sin (model_coefficients[6]),
160 cos_opening_angle = std::cos (model_coefficients[6]),
161 tan_opening_angle = std::tan (model_coefficients[6]);
162
163 float apexdotdir = apex.dot (axis_dir);
164 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
165 // Iterate through the 3d points and calculate the distances from them to the cone
166 for (std::size_t i = 0; i < indices_->size (); ++i)
167 {
168 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
169
170 // Calculate the point's projection on the cone axis
171 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
172 Eigen::Vector4f pt_proj = apex + k * axis_dir;
173
174 // Calculate the actual radius of the cone at the level of the projected point
175 Eigen::Vector4f height = apex - pt_proj;
176 float actual_cone_radius = tan_opening_angle * height.norm ();
177
178 // Approximate the distance from the point to the cone as the difference between
179 // dist(point,cone_axis) and actual cone radius
180 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
181
182 // Calculate the direction of the point from center
183 Eigen::Vector4f dir = pt - pt_proj;
184 dir.normalize ();
185
186 // Calculate the cones perfect normals
187 height.normalize ();
188 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * dir;
189
190 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
191 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
192 double d_normal = std::abs (getAngle3D (n, cone_normal));
193 d_normal = (std::min) (d_normal, M_PI - d_normal);
194
195 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
196 }
197}
198
199//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
200template <typename PointT, typename PointNT> void
202 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
203{
204 // Check if the model is valid given the user constraints
205 if (!isModelValid (model_coefficients))
206 {
207 inliers.clear ();
208 return;
209 }
210
211 inliers.clear ();
212 error_sqr_dists_.clear ();
213 inliers.reserve (indices_->size ());
214 error_sqr_dists_.reserve (indices_->size ());
215
216 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
217 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
218 const float sin_opening_angle = std::sin (model_coefficients[6]),
219 cos_opening_angle = std::cos (model_coefficients[6]),
220 tan_opening_angle = std::tan (model_coefficients[6]);
221
222 float apexdotdir = apex.dot (axis_dir);
223 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
224 // Iterate through the 3d points and calculate the distances from them to the cone
225 for (std::size_t i = 0; i < indices_->size (); ++i)
226 {
227 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
228
229 // Calculate the point's projection on the cone axis
230 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
231 Eigen::Vector4f pt_proj = apex + k * axis_dir;
232
233 // Calculate the actual radius of the cone at the level of the projected point
234 Eigen::Vector4f height = apex - pt_proj;
235 double actual_cone_radius = tan_opening_angle * height.norm ();
236
237 // Approximate the distance from the point to the cone as the difference between
238 // dist(point,cone_axis) and actual cone radius
239 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
240 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
241 continue;
242
243 // Calculate the direction of the point from center
244 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
245 pp_pt_dir.normalize ();
246
247 // Calculate the cones perfect normals
248 height.normalize ();
249 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
250
251 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
252 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
253 double d_normal = std::abs (getAngle3D (n, cone_normal));
254 d_normal = (std::min) (d_normal, M_PI - d_normal);
255
256 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
257
258 if (distance < threshold)
259 {
260 // Returns the indices of the points whose distances are smaller than the threshold
261 inliers.push_back ((*indices_)[i]);
262 error_sqr_dists_.push_back (distance);
263 }
264 }
265}
266
267//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
268template <typename PointT, typename PointNT> std::size_t
270 const Eigen::VectorXf &model_coefficients, const double threshold) const
271{
272
273 // Check if the model is valid given the user constraints
274 if (!isModelValid (model_coefficients))
275 return (0);
276
277 std::size_t nr_p = 0;
278
279 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
280 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
281 const float sin_opening_angle = std::sin (model_coefficients[6]),
282 cos_opening_angle = std::cos (model_coefficients[6]),
283 tan_opening_angle = std::tan (model_coefficients[6]);
284
285 float apexdotdir = apex.dot (axis_dir);
286 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
287 // Iterate through the 3d points and calculate the distances from them to the cone
288 for (std::size_t i = 0; i < indices_->size (); ++i)
289 {
290 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
291
292 // Calculate the point's projection on the cone axis
293 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
294 Eigen::Vector4f pt_proj = apex + k * axis_dir;
295
296 // Calculate the actual radius of the cone at the level of the projected point
297 Eigen::Vector4f height = apex - pt_proj;
298 double actual_cone_radius = tan_opening_angle * height.norm ();
299
300 // Approximate the distance from the point to the cone as the difference between
301 // dist(point,cone_axis) and actual cone radius
302 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
303 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
304 continue;
305
306 // Calculate the direction of the point from center
307 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
308 pp_pt_dir.normalize ();
309
310 // Calculate the cones perfect normals
311 height.normalize ();
312 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
313
314 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
315 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
316 double d_normal = std::abs (getAngle3D (n, cone_normal));
317 d_normal = (std::min) (d_normal, M_PI - d_normal);
318
319 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
320 nr_p++;
321 }
322 return (nr_p);
323}
324
325//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
326template <typename PointT, typename PointNT> void
328 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
329{
330 optimized_coefficients = model_coefficients;
331
332 // Needs a set of valid model coefficients
333 if (!isModelValid (model_coefficients))
334 {
335 PCL_ERROR ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Given model is invalid!\n");
336 return;
337 }
338
339 // Need more than the minimum sample size to make a difference
340 if (inliers.size () <= sample_size_)
341 {
342 PCL_ERROR ("[pcl::SampleConsensusModelCone:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
343 return;
344 }
345
346 Eigen::ArrayXf pts_x(inliers.size());
347 Eigen::ArrayXf pts_y(inliers.size());
348 Eigen::ArrayXf pts_z(inliers.size());
349 std::size_t pos = 0;
350 for(const auto& index : inliers) {
351 pts_x[pos] = (*input_)[index].x;
352 pts_y[pos] = (*input_)[index].y;
353 pts_z[pos] = (*input_)[index].z;
354 ++pos;
355 }
356 pcl::internal::optimizeModelCoefficientsCone(optimized_coefficients, pts_x, pts_y, pts_z);
357
358 PCL_DEBUG ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Initial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
359 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
360 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
361
362 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
363 line_dir.normalize ();
364 optimized_coefficients[3] = line_dir[0];
365 optimized_coefficients[4] = line_dir[1];
366 optimized_coefficients[5] = line_dir[2];
367}
368
369//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
370template <typename PointT, typename PointNT> void
372 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
373{
374 // Needs a valid set of model coefficients
375 if (!isModelValid (model_coefficients))
376 {
377 PCL_ERROR ("[pcl::SampleConsensusModelCone::projectPoints] Given model is invalid!\n");
378 return;
379 }
380
381 projected_points.header = input_->header;
382 projected_points.is_dense = input_->is_dense;
383
384 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
385 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
386 const float tan_opening_angle = std::tan (model_coefficients[6]);
387
388 float apexdotdir = apex.dot (axis_dir);
389 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
390
391 // Copy all the data fields from the input cloud to the projected one?
392 if (copy_data_fields)
393 {
394 // Allocate enough space and copy the basics
395 projected_points.resize (input_->size ());
396 projected_points.width = input_->width;
397 projected_points.height = input_->height;
398
399 using FieldList = typename pcl::traits::fieldList<PointT>::type;
400 // Iterate over each point
401 for (std::size_t i = 0; i < projected_points.size (); ++i)
402 // Iterate over each dimension
403 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
404
405 // Iterate through the 3d points and calculate the distances from them to the cone
406 for (const auto &inlier : inliers)
407 {
408 Eigen::Vector4f pt ((*input_)[inlier].x,
409 (*input_)[inlier].y,
410 (*input_)[inlier].z,
411 1);
412
413 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
414
415 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
416 pp.matrix () = apex + k * axis_dir;
417
418 Eigen::Vector4f dir = pt - pp;
419 dir.normalize ();
420
421 // Calculate the actual radius of the cone at the level of the projected point
422 Eigen::Vector4f height = apex - pp;
423 float actual_cone_radius = tan_opening_angle * height.norm ();
424
425 // Calculate the projection of the point onto the cone
426 pp += dir * actual_cone_radius;
427 }
428 }
429 else
430 {
431 // Allocate enough space and copy the basics
432 projected_points.resize (inliers.size ());
433 projected_points.width = inliers.size ();
434 projected_points.height = 1;
435
436 using FieldList = typename pcl::traits::fieldList<PointT>::type;
437 // Iterate over each point
438 for (std::size_t i = 0; i < inliers.size (); ++i)
439 // Iterate over each dimension
440 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
441
442 // Iterate through the 3d points and calculate the distances from them to the cone
443 for (std::size_t i = 0; i < inliers.size (); ++i)
444 {
445 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
446 pcl::Vector4fMapConst pt = (*input_)[inliers[i]].getVector4fMap ();
447
448 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
449 // Calculate the projection of the point on the line
450 pp.matrix () = apex + k * axis_dir;
451
452 Eigen::Vector4f dir = pt - pp;
453 dir.normalize ();
454
455 // Calculate the actual radius of the cone at the level of the projected point
456 Eigen::Vector4f height = apex - pp;
457 float actual_cone_radius = tan_opening_angle * height.norm ();
458
459 // Calculate the projection of the point onto the cone
460 pp += dir * actual_cone_radius;
461 }
462 }
463}
464
465//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
466template <typename PointT, typename PointNT> bool
468 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
469{
470 // Needs a valid model coefficients
471 if (!isModelValid (model_coefficients))
472 {
473 PCL_ERROR ("[pcl::SampleConsensusModelCone::doSamplesVerifyModel] Given model is invalid!\n");
474 return (false);
475 }
476
477 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
478 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
479 const float tan_opening_angle = std::tan (model_coefficients[6]);
480
481 float apexdotdir = apex.dot (axis_dir);
482 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
483
484 // Iterate through the 3d points and calculate the distances from them to the cone
485 for (const auto &index : indices)
486 {
487 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
488
489 // Calculate the point's projection on the cone axis
490 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
491 Eigen::Vector4f pt_proj = apex + k * axis_dir;
492 Eigen::Vector4f dir = pt - pt_proj;
493 dir.normalize ();
494
495 // Calculate the actual radius of the cone at the level of the projected point
496 Eigen::Vector4f height = apex - pt_proj;
497 double actual_cone_radius = tan_opening_angle * height.norm ();
498
499 // Approximate the distance from the point to the cone as the difference between
500 // dist(point,cone_axis) and actual cone radius
501 if (std::abs (static_cast<double>(pointToAxisDistance (pt, model_coefficients) - actual_cone_radius)) > threshold)
502 return (false);
503 }
504
505 return (true);
506}
507
508//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
509template <typename PointT, typename PointNT> double
511 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
512{
513 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
514 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
515 return sqrt(pcl::sqrPointToLineDistance (pt, apex, axis_dir));
516}
517
518//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
519template <typename PointT, typename PointNT> bool
520pcl::SampleConsensusModelCone<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
521{
522 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
523 return (false);
524
525 // Check against template, if given
526 if (eps_angle_ > 0.0)
527 {
528 // Obtain the cone direction
529 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
530
531 double angle_diff = std::abs (getAngle3D (axis_, coeff));
532 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
533 // Check whether the current cone model satisfies our angle threshold criterion with respect to the given axis
534 if (angle_diff > eps_angle_)
535 {
536 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] Angle between cone direction and given axis is too large.\n");
537 return (false);
538 }
539 }
540
541 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
542 {
543 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too small: should be larger than %g, but is %g.\n",
544 min_angle_, model_coefficients[6]);
545 return (false);
546 }
547 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
548 {
549 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too big: should be smaller than %g, but is %g.\n",
550 max_angle_, model_coefficients[6]);
551 return (false);
552 }
553
554 return (true);
555}
556
557#define PCL_INSTANTIATE_SampleConsensusModelCone(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCone<PointT, PointNT>;
558
559#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
560
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cone coefficients using the given inlier set and return them to the user.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cone model.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cone model.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cone model, compute the model coefficients fro...
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
double pointToAxisDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cone model coefficients.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModel represents the base model class.
Definition sac_model.h:71
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
int optimizeModelCoefficientsCone(Eigen::VectorXf &coeff, const Eigen::ArrayXf &pts_x, const Eigen::ArrayXf &pts_y, const Eigen::ArrayXf &pts_z)
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
#define M_PI
Definition pcl_macros.h:201