The Burgers equation by the discontinous Galerkin method.
int main(
int argc,
char**argv) {
space Xh (omega, argv[2]);
size_t nmax = (argc > 3) ? atoi(argv[3]) : numeric_limits<size_t>::max();
Float tf = (argc > 4) ? atof(argv[4]) : 2.5;
size_t p = (argc > 5) ? atoi(argv[5]) :
ssp::pmax;
lopt.
M = (argc > 6) ? atoi(argv[6]) :
u_init().
M();
if (nmax == numeric_limits<size_t>::max()) {
nmax = (size_t)floor(1+tf/(cfl*omega.hmin()));
}
vector<field> uh(
p+1,
field(Xh,0));
dout <<
catchmark(
"delta_t") << delta_t << endl
<< even(0,uh[0]);
for (
size_t n = 1;
n <= nmax; ++
n) {
for (
size_t i = 1; i <=
p; ++i) {
uh[i] = 0;
for (size_t j = 0; j < i; ++j) {
}
}
dout << even(
n*delta_t,uh[0]);
}
}
The Burgers equation – the f function.
int main(int argc, char **argv)
field lh(Float epsilon, Float t, const test &v)
The Burgers equation – the Godonov flux.
see the Float page for the full documentation
see the branch page for the full documentation
see the field page for the full documentation
see the geo page for the full documentation
see the point page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the integrate_option page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
The Burgers problem: the Harten exact solution.
class rheolef::details::field_expr_v2_nonlinear_node_unary compose
rheolef::details::is_vec dot
This file is part of Rheolef.
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_h(const Expr &expr)
grad_h(uh): see the expression page for the full documentation
details::field_expr_v2_nonlinear_terminal_function< details::normal_pseudo_function< Float > > normal()
normal: see the expression page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
field_basic< T, M > limiter(const field_basic< T, M > &uh, const T &bar_g_S, const limiter_option &opt)
see the limiter page for the full documentation
Float beta[][pmax+1][pmax+1]
Float alpha[][pmax+1][pmax+1]
rheolef - reference manual
The strong stability preserving Runge-Kutta scheme – coefficients.
see the limiter page for the full documentation