The Poisson problem with homogeneous boundary conditions – variable right-hand-side.
The Poisson problem with homogeneous boundary conditions – variable right-hand-side
int main(
int argc,
char**argv) {
size_t d = omega.dimension();
space Xh (omega, argv[2]);
Xh.block ("boundary");
uh ["boundary"] = 0;
}
field lh(Float epsilon, Float t, const test &v)
see the field page for the full documentation
see the geo page for the full documentation
see the problem page for the full documentation
see the catchmark page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main(int argc, char **argv)
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad(const Expr &expr)
grad(uh): see the expression page for the full documentation
std::enable_if< details::is_field_expr_quadrature_arg< Expr >::value, details::field_lazy_terminal_integrate< Expr > >::type lazy_integrate(const typename Expr::geo_type &domain, const Expr &expr, const integrate_option &iopt=integrate_option())
see the integrate page for the full documentation
rheolef - reference manual
The sinus product function – right-hand-side and boundary condition for the Poisson problem with Neum...